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Electrical transport properties of liquid alloys
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The electrical transport properties namely the electrical resistivity (�), the thermoelectric power
(TEP) and the thermal conductivity (�) of several polyvalent alloys like In1�xBix and Sn1�xBix
were calculated from the pseudopotential form factors and Percus-Yevic (PY) hard sphere
structure factors of Ashcroft and Langreth. The well-recognized empty core model (EMC)
potential of Ashcroft is used for the first time with seven local field correction functions due to
Hartree (H), Hubbard–Sham (HS), Vashista–Singwi (VS), Taylor (T), Ichimaru–Utsumi (IU),
Farid et al. (F) and Sarkar et al. (S) in the present computation and found suitable for such
study. It is concluded that the comparison of present and experimental findings is highly
encouraging.
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1. Introduction

During the last several years there has been an increasing interest in the properties
of non-crystalline conductors such as liquid metals and liquid metallic alloys. Such
a liquid exhibits metallic as well as fluid-like behaviour and hence can help to make
a link between the theory of the liquid states and the theory of the electronic states
in metals. And hence the study of electrical transport properties of liquid metals and
their alloys remains one of the favourite quantities either experimentally or theoretically
[1–11]. It was found that the electrical resistivities of the alloys obey two rules:
(i) Nordheim’s rule [12] and (ii) Linde’s rule [13]. In Nordheim’s rule the resistivity
of liquid alloys depends directly on the product of the atomic concentrations in
the percentage of the guest and host elements [12]. While according to Linde’s rule [13],
the resistivity derivative with respect to atomic concentration is directly proportional
to the difference of the variables of the guest and host elements.

Despite the rich accumulation of experimental studies, the atomistic approach to
the problem of the liquid metals had been very slow in progress until Ziman [14]
proposed the theory of electrical resistivity of liquid metals. Basically, there are three
approaches for the theoretical investigations of transport properties of liquid
metals: one is based on the nearly free electron picture [14], second one is the finite
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mean-free path approach [5] and the third is based on tight-binding approximation
[15]. The tight-binding approach usually involves either the average T-matrix
approximation or the coherent potential approximation. A self-consisting approach
corresponding to the finite mean free-path is taking account of finite uncertainty in
the electron momentum. In this article, we report the electrical resistivity (�),
the thermoelectric power (TEP) and the thermal conductivity (�) of several polyvalent
alloys namely In1�xBix and Sn1�xBix based on the well-recognized empty core model
(EMC) potential of Ashcroft [16]. Hence, both the second and the third approaches
are beyond the confines of present objectives of the article as well as pseudopotential
theory. So we will only be concerned and concentrate with the first approach of nearly
free electron theory of Ziman [14].

In the past, Faber–Ziman [17] extended the formula for pure liquid metals easily
to the binary alloys. The two important ingredients of the formula are the partial
structure factors and the form factors, respectively. When one is calculating
the transport properties of binary alloys, problems arise from the partial structure
factors rather than from the form factors. Experimental data on the partial
structure factors are scarce or have insufficient accuracy. In the present work, the
partial structure factors are computed from the well-known Percus–Yevic (PY) hard
sphere model of Ashcroft and Langreth [3]. Seven different types of the local
field correction functions proposed by Hubbard–Sham (HS) [18,19], Vashista–Singwi
(VS) [20], Taylor (T) [21], Ichimaru–Utsumi (IU) [22], Farid et al. (F) [23] and Sarkar
et al. (S) [24] are employed for the first time to investigate the influence of exchange
and correlation effects with reference to the static Hartree (H) [25] screening function in
the present computations.

2. Theoretical methodology

The Faber–Ziman [17] approach of investigating electrical resistivity of liquid metals
assume the model of a gas of conduction electrons that interact with and are scattered
by irregularly placed metal ions. As an external electric field drives the electron
through the disordered medium, the scattering determines the electrical resistance
that can be calculated using perturbation theory: the transition rate from an initial state
jki to the final state jkþ qi on the Fermi level with the density of state is given by

Pð�Þ ¼
2�

�h
jhkþ qjW kj ij2

1

2
NFEðEFÞ, ð1Þ

where � is the angle between k and kþ q, the factor (1/2) arises from the fact that
electron spin does not change on scattering. Now the conductivity in the relaxation time
approximation is given by

� ¼
1

3
e2v2F�NFEðEFÞ: ð2Þ

Here e is the electronic charge, vF is the velocity of the electrons at the Fermi level and �
is the relaxation time. The relaxation time, �, is given by

1

�
¼

Z
ð1� cos �ÞPð�Þd�, ð3Þ
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where � is scattering angle, � is solid angle and P(�) is probability for scattering through
the angle �.

Now assuming the free electron distribution, an expression for the electrical resistivity

of liquid metal in terms of the average of the product of the structure factor and

pseudopotential matrix element can be written as [1–11,14]

� ¼
3�m2

4e2�h3nk6F

Z 1
0

SðqÞjVðqÞj2q3 dq � 2kF � qð Þ, ð4Þ

where n is the electron density related to Fermi wave number and � is the unit

step function that cuts of the q-integration at 2kF corresponding to a perfectly sharp

Fermi surface. S(q) is the structure factor and V(q) is the screened ion pseudopotential

form factor.
This method is initially applied to the liquid metals only, but later on the approach

restructured to investigate the resistivity of A1¼XBX liquid binary alloys [1–11,14].

Hence equation (4) is written as

� ¼
3�m2

4e2�h3nk6F

Z 1
0

�ðqÞq3 dq � 2kF � qð Þ, ð5Þ

with

�ðqÞ ¼ ð1� XÞS11V
2
1
ðqÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xð1� XÞ

p
S11S22V1ðqÞV2ðqÞ þ XS22V

2
2
ðqÞ: ð6Þ

Here, V1(q) and V2(q) denote the model potentials for elements A and B, Sij are the

partial structure factors, X is the concentration of the second metallic component of

A1¼XBX mixture. Here we have used Ashcroft–Lengreth’s [3] formulations to generate

the partial structure factor of the binary metallic complexes.
The expression TEP is given by [2]

TEP ¼ �
�2k2BTK

3jejE
�

� �
E¼EF

ð7Þ

with

� ¼ 3� 2�, ð8Þ

where

� ¼
�ðqÞ

�
: ð9Þ

It is well known that if a temperature gradient is applied to a metal, the conduction

electrons will carry a heat current along with them even though an electric current is

prevented from flowing and that indeed they are responsible for the major part of the

thermal conductivity. The expression of the thermal conductivity (�) for the binary

alloy can be written as [2]

� ¼
�2k2BTK

3jej2�

� �
: ð10Þ
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Here, e, E, EF, TK, kB and � are the electronic charge, energy, Fermi energy,
temperature (K), the Boltzmann’s constants and the term of dimensionless thermo-
electric power, respectively.

In the present work, the electrical transport properties namely the electrical resistivity
(�), the TEP and the thermal conductivity (�) of several polyvalent alloys have been
calculated by applying Ashcroft’s well-known empty core (EMC) model potential [16]
including seven different types of the local field correlation functions [18–25]. The form
factor explored in the present investigation is of the form [16],

WðqÞ ¼
�4�Ze2

�Oq2"ðqÞ
cosðqrCÞ, ð11Þ

where, Z is the valence, �O is the atomic volume, rC is the parameter of the potential
and "(q) is the modified Hartree dielectric function [27]. The parameter of the potential
rC may be set from appropriate experimental information (e.g., the Fermi surface
or ionization energy). In this instance, it was determined by the known electrical
resistivities of the pure liquid metals at the melting points.

3. Results and discussion

The input parameters and constants used in the present computations are narrated
in table 1. The computed results of electrical properties namely the electrical resistivity
(�), the thermoelectric power (TEP) and the thermal conductivity (�) of In1�xBix
and Sn1�xBix binary alloys are displayed in figures 1–6.

The concentration dependence of the electrical resistivity (�) is examined by varying
X¼ 0 to X¼ 1 in the step size of 0.1. The results for the presently calculated electrical
resistivities (�) for In1�xBix and Sn1�xBix systems at 300�C is shown with the
experimental data [26, 27] in figures 1–3. From the figures 1 and 2 it is seen that, among
the seven employed local field correction functions, the local field correction function
due to H (without exchange and correlation) gives the minimum numerical value of
the electrical resistivity, while the local field correction function due to F gives the
maximum value. The present findings of the electrical resistivity (�) of In1�xBix
and Sn1�xBix binary alloys due to HB, VS, T, IU and S local field correction functions
are lying between H and F functions. The linear nature is almost found for In1�xBix
alloys and the results due to HB screening are found in good agreement with
the experimental data [26].

The packing fraction, 	, for the alloys was obtained by taking a linear average of the
two components at each composition. Ashcroft and Lengreth [3] pointed out that
the packing fraction, 	, calculated by comparison of the working temperature and

Table 1. The input parameters and constants.

Hard sphere

Metal Z Diameter (D) (au) 	 rC (au) �O (au)

In 3 5.4424 0.42 1.3379 244.84
Sn 4 5.5180 0.44 1.3285 194.64
Bi 5 5.8959 0.456 1.5175 206.48
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Figure 1. Electrical resistivity (�) of In1�xBix binary mixture.
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Figure 2. Electrical resistivity (�) of Sn1�xBix binary mixture.
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Figure 4. Thermoelectric power (TEP) of Sn1�xBix binary mixture.
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Figure 3. Thermoelectric power (TEP) of In1�xBix binary mixture.

218 A. M. Vora

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
3
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

Concentration (X)

T
he

rm
al

 c
on

du
ct

iv
ity

 (
σ)

 (
W

at
t K

 c
m

−1
)

H
HS
VS
T
IU
F
S

In1−xBix

Figure 5. Thermal conductivity (�) of In1�xBix binary mixture.
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Figure 6. Thermal conductivity (�) of Sn1�xBix binary mixture.
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the liquidus temperature using d	/dT for the components does not differ significantly

from the linear combination of the pure component packing fraction. The present

results are found in qualitative agreement with the available experimental findings

[26,27]. One interesting feature is noted herewith as concentration X of the element

B increases, electrical resistivity (�) of the system increases.
In comparison with the presently computed results of the electrical resistivity (�)

from static H function, the percentile influences for In1�xBix alloys of HB, VS, T, IU, F

and S functions are of the order of 16.02–20.76%, 31.03–39.83%, 50.20–59.58%, 56.32–

67.43%, 59.86–71.34% and 20.04–28.91%, respectively. While those influences found

for Sn1�xBix binaries are of the order of 16.02–17.319, 31.01–32.82%, 50.15–51.67%,

56.23–58.37%, 59.37–61.77% and 20.03–22.55%, respectively.
The qualitative agreement with the experimental data may be indicative of the free

electron behaviour of these mixtures in the whole concentration range. Here also,

the calculated electrical resistivities of the In1�XBiX and Sn1�XBiX systems increase

like alkali–alkali systems. The peak of the curve increases with the increase of their

electronegativity differences. The present study indicates the free electron behaviour

of these mixtures in the whole composition range and all the constituent atoms

are randomly distributed in the system.
The TEP for In1�xBix and Sn1�xBix binary systems are displayed in figures 3 and 4. It

is seen that, as the concentration X of the element B increases, the TEP decreases

and reaches the maximum value; after that the further increase in X increases the TEP

of the system. Also, among the seven employed local field correction functions, the local

field correction function due to H (without exchange and correlation) gives the

maximum numerical value of the TEP, while the local field correction function due to

F gives the minimum value. The present findings of the TEP of In1�xBix and Sn1�xBix
binary alloys due to HB, VS, T, IU and S local field correction functions are

lying between H- and F functions. The linear nature is almost found for In1�xBix alloys.

The experimental or theoretical data of TEP are not available for the further

comparison. In the study of the TEP for binary alloys, when two different metals

are placed in contact, charge flows from one to another until a potential difference is set

up such that EA
F ¼ EB

F.
In comparison with the presently computed results of the TEP from static H function,

the percentile influences for In1�xBix alloys of HB, VS, T, IU, F and S functions are

of the order of 1.61–2.01%, 2.39–3.11%, 0.75–2.76%, 3.49–5.85%, 2.75–5.21%

and 2.01–2.37%, respectively. While those influences found for Sn1�xBix binaries

are of the order of 1.85–2.06%, 2.57–3.18%, 1.76–2.81%, 4.41–6.97%, 3.79–5.31%

and 2.09–2.42%, respectively.
The thermal conductivity (�) for In1�xBix and Sn1�xBix binary systems are shown in

figures 5 and 6. It is noted that as the concentration X of the element B increases,

the thermal conductivity (�) decreases. Also, among the seven employed local field

correction functions, the local field correction function due to H (without exchange

and correlation) gives the maximum numerical value of the thermal conductivity (�),
while the local field correction function due to F gives the minimum value. The present

findings of the thermal conductivity (�) of In1�xBix and Sn1�xBix binary alloys due

to HB, VS, T, IU and S local field correction functions are lying between H

and F functions. The experimental or theoretical data of thermal conductivity (�) are
not available for the further comparison.
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In comparison with the presently computed results of the thermal conductivity
(�), from static H function, the percentile influences for In1�xBix alloys of HB,
VS, T, IU, F and S-functions are of the order of 13.78–15.83%, 23.67–27.90%,
33.44–37.33%, 36.01–40.27%, 37.45–41.64% and 16.66–21.87%, respectively. While
those influences found for Sn1�xBix binaries are of the order of 13.80–14.67%,
23.68–24.33%, 33.37–34.08%, 35.95–36.79%, 37.42–38.20% and 16.69–18.39%,
respectively.

The numerical values of the electrical transport properties namely the electrical
resistivity (�), the thermoelectric power (TEP) and the thermal conductivity (�)
are found to be quite sensitive to the selection of the local field correction function
and showing a significant variation with the change in the function. Thus, the
calculations of the electrical transport properties namely the electrical resistivity (�),
the thermoelectric power (TEP) and the thermal conductivity (�) are one of the sensitive
tests for the proper assessment of the form factor of the model potential and in
the absence of experimental information such calculations may be considered as one of
the guidelines for further investigations either theoretical or experimental.

It is apparent that for all cases, using the resistivity model of Ashcroft and Langreth
[3], better calculated agreement with experimental values was obtained by
allowing variation in atomic volume. One could conclude from this information that
structure information in resistivity models seems to be required.

4. Conclusions

Finally, we concluded that the electrical transport properties namely the electrical
resistivity (�), the thermoelectric power (TEP) and the thermal conductivity (�)
of several polyvalent alloys namely In1�xBix and Sn1�xBix are reported for the first time
using EMC model potential and Percus–Yevic (PY) hard sphere model with seven
different types of local field correction functions. The EMC model potential with
more advanced IU, F and S local field correction functions generate consistent results
regarding the electrical transport properties. Hence, the EMC model potential
is found suitable for studying the electrical transport properties of polyvalent alloys.
Also, the present investigation predicts that the present study of the electrical
transport properties is sensitive to the selection of the proper local field correction
function.
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